Основы построения объединенных сетей по технологиям CISCO

         

Библиографическая справка


Стандарт на "Волоконно-оптический интерфейс по распределенным данным" (FDDI) был выпущен ANSI X3Т9.5 (комитет по разработке стандартов) в середине 1980 гг. В этот период быстродействующие АРМ проектировщика уже начинали требовать максимального напряжения возможностей существующих локальных сетей (LAN) (в oсновном Ethernet и Token Ring). Возникла необходимость в новой LAN, которая могла бы легко поддерживать эти АРМ и их новые прикладные распределенные системы. Одновременно все большее значение уделяется проблеме надежности сети, т.к. администраторы систем начали переносить критические по назначению прикладные задачи из больших компьютеров в сети. FDDI была создана для того, чтобы удовлетворить эти потребности.

После завершения работы над FDDI, ANSI представила его на рассмотрение в ISO. ISO разработала международный вариант FDDI, который полностью совместим с вариантом стандарта, разработанным ANSI.

Хотя реализации FDDI сегодня не столь распространены, как Ethernet или Token Ring, FDDI приобрела значительное число своих последователей, которое увеличивается по мере уменьшения стоимости интерфейса FDDI. FDDI часто используется как основа технологий, а также как средство для соединения быстродействующих компьютеров, находящихся в локальной области.



Библиографическая справка


Система сети UltraNet, или просто UltraNet, состоит из семейства высокоскоростных программ для объединенных сетей и аппаратных изделий, способных обеспечить совокупную пропускную способность в один гигабайт в секунду (Gb/сек). UltraNet производится и реализуется на рынке компанией Ultra Network Technologies. UltraNet oбычно используется для соединения высокоскоростных компьютерных систем, таких как суперкомпьютеры, минисуперкомпьютеры, универсальные вычислительные машины, устройства обслуживания и АРМ. UltraNet может быть сама соединена с другой сетью (например, Ethernet и Token Ring) через роутеры, которые выполняют функции межсетевого интерфейса.



Библиографическая справка


Бесспорной тенденцией развития сетей является увеличение скорости связи. В последнее время с появлением интерфейса Fiber Distributed Data Interface (FDDI) (Волоконно-оптический интерфейс по распределенным данным) локальные сети переместились в диапазон скоростей до 100 Mb/сек. Прикладные программы для локальных сетей, стимулирующие это увеличение скоростей, включают передачу изображений, видеосигналов и современные прикладные задачи передачи распределенной информации (клиент-устройство обслуживания). Более быстродействующие компьютерные платформы будут продолжать стимулировать увеличение скоростей в окружениях локальных сетей по мере того, как они будут делать возможными новые высокоскоростные прикладные задачи.

Уже разработаны линии глобальных сетей (WAN) с более высокой пропускной способностью, чтобы соответствовать постоянно растущим скоростям LAN и сделать возможным увеличение протяженности канала универсальной вычислительной машины через глобальные сети. Технологии WAN, такие как Frame Relay (Реле блока данных), Switched Multimegabit Data Service

(SMDS) (Обслуживание переключаемых мультимегабитовых информационных каналов), Synchronous Optical Network (Sonet) (Синхронная оптическая сеть) и Broadband Integrated Services Digital Network (Broadband ISDN, или просто BISDN) (Широкополосная цифровая сеть с интегрированными услугами), использовали преимущества новых цифровых и волоконно-оптических технологий для того, чтобы обеспечить WAN иную роль, чем роль узкого бутылочного горлышка в сквозной передаче через большие географические пространства. Дополнительная информация по Frame Relay и SMDS приведена соответственно в Главе 3.

С достижением более высоких скоростей в окружениях как локальных, так и глобальных сетей, насущной необходимостью стал интерфейс data terminal equipment (DTE)/data circuit-terminating equipment (DCE) (Интерфейс "терминальное оборудование/оборудование завершения работы информационной цепи"), который мог бы соединить эти два различных мира и не стать при этом узким бутылочным горлышком. Стандарты классических интерфейсов DTE/DCE, таких как RS-232 и V.35, не способны обеспечить скорости Т3 или аналогичные им скорости. К концу 1980 гг. стало очевидно, что необходим новый протокол DTE/DCE.

High-Speed Serial Interface (HSSI) (Высокоскоростной последовательный интерфейс) является интерфейсом DTE/DCE, разработанным компаниями Cisco Systems и T3Plus Networking, чтобы удовлетворить перечисленные выше потребности. Спецификация HSSI доступна для любой организации, которая хочет реализовать HSSI. Пока что распределено свыше 150 копий этой спецификации, и десятки компаний либо уже реализовали одно из технических решений HSSI, либо находятся в стадии реализации. Менее чем за 3 года HSSI стала настоящим промышленным стандартом.

В настоящее время HSSI находится в стадии процесса официальной стандартизации в комитете Ассоциации электронной промышленности (EIA/TIATR30.2) Американскогo национальногo институтa стандартизации (ANSI). Недавно он был передан в организации "Международный Консультативный Комитет по Телеграфии и Телефонии" (CCITT) и "Международная Организация по Стандартизации" (ISO); ожидается, что он будет стандартизирован обеими организациями.



Библиографическая справка


В конце 1980 гг. Internet (крупная международная сеть, соединяющая множество иссследовательских организаций, университетoв и коммерческих концернов) начала испытывать резкий рост числа главных вычислительных машин, обеспечивающих TCP/IP. Преобладающая часть этих главных вычислительных машин была подсоединена к локальным сетям (LAN) различных типов, причем наиболее популярной была Ethernet. Большая часть других главных вычислительных машин.соединялись через глобальные сети (WAN), такие как общедоступные сети передачи данных (PDN) типа Х.25. Сравнительно небольшое число главных вычислительных машин были подключены к каналам связи с непосредственным (двухточечным) соединением (т.е. к последовательным каналами связи). Однако каналы связи с непосредственным соединением принадлежат к числу старейших методов передачи информации, и почти каждая главная вычислительная машина поддерживает непосредственные соединения. Например, асинхронные интерфейсы RS-232-С встречаются фактически повсюду.

Одной из причин малого числа каналов связи IP с непосредственным соединением было отсутствие стандартного протокола формирования пакета данных Internet. Протокол Point-to-Point Protocol (PPP) (Протокол канала связи с непосредственным соединением) предназначался для решения этой проблемы. Помимо решения проблемы формирования стандартных пакетов данных Internet IP в каналах с непосредственным соединением, РРР также должен был решить другие проблемы, в том числе присвоение и управление адресами IP, асинхронное (старт/стоп) и синхронное бит-ориентированное формирование пакета данных, мультиплексирование протокола сети, конфигурация канала связи, проверка качества канала связи, обнаружение ошибок и согласование варианта для таких способностей, как согласование адреса сетевого уровня и согласование компрессии информации. РРР решает эти вопросы путем обеспечения расширяемого Протокола Управления Каналом (Link Control Protocol) (LCP) и семейства Протоколов Управления Сетью (Network Control Protocols) (NCP), которые позволяют согласовывать факультативные параметры конфигурации и различные возможности. Сегодня PPP, помимо IP, обеспечивает также и другие протоколы, в том числе IPX и DECnet.



Библиографическая справка


Название сети Integrated Services Digital Network (ISDN) (Цифровая сеть с интегрированными услугами) относится к набору цифровых услуг, которые становятся доступными для конечных пользователей. ISDN предполагает оцифровывание телефонной сети для того, чтобы голос, информация, текст, графические изображения, музыка, видеосигналы и другие материальные источники могли быть переданы конечному пользователю по имеющимся телефонным проводам и получены им из одного терминала конечного пользователя. Сторонники ISDN рисуют картину сети мирового масштаба, во многом похожую на сегодняшнюю телефонную сеть, за тем исключением, что в ней используется передача цирфрового сигнала и появляются новые разнообразные услуги.

ISDN является попыткой стандартизировать абонентские услуги, интерфейсы пользователь/сеть и сетевые и межсетевые возможности. Стандартизация абонентских услуг является попыткой гарантировать уровень совместимости в международном масштабе. Стандартизация интерфейса пользователь/сеть стимулирует разработку и сбыт на рынке этих интерфейсов изготовителями, являющимися третьей участвующей стороной. Стандартизация сетевых и межсетевых возможностей помогает в достижении цели возможного объединения в мировом масштабе путем обеспечения легкости связи сетей ISDN друг с другом.

Применения ISDN включают быстродействующие системы обработки изображений (такие, как факсимиле Group 1V), дополнительные телефонные линии в домах для обслуживания индустрии дистанционного доступа, высокоскоростную передачу файлов и проведение видео конференций. Передача голоса несомненно станет популярной прикладной программой для ISDN.

Многие коммерческие сети связи начинают предлагать ISDN по ценам ниже тарифных. В Северной Америке коммерческие сети связи с коммутатором локальных сетей (Local-exchange carrier) (LEC) начинают обеспечивать услуги ISDN в качестве альтернативы соединениям Т1, которые в настоящее время выполняюут большую часть услуг "глобальной телефонной службы" (WATS) (wide-area telephone service).



Физические соединения




Станции сети IBM Token Ring напрямую подключаются к MSAU, которые могут быть объединены с помощью кабелей, образуя одну большую кольцевую сеть (смотри Рис. 2.4). Кабели-перемычки соединяют MSAU со смежными MSAU. Кабели-лепестки подключают MSAU к станциям. В составе МSAU имеются шунтирующие реле для исключения станций из кольца.


Рис. 2.4.  IBM Token Ring Network Physical Connections



Физические соединения


FDDI устанавливает применение двойных кольцевых сетей. Трафик по этим кольцам движется в противоположных направлениях. В физическом выражении кольцо состоит из двух или более двухточечных соединений между смежными станциями. Одно из двух колец FDDI называется первичным кольцом, другое-вторичным кольцом. Первичное кольцо используется для передачи данных, в то время как вторичное кольцо обычно является дублирующим.

"Станции Класса В" или "станции, подключаемые к одному кольцу" (SAS) подсоединены к одной кольцевой сети; "станции класса А" или "станции, подключаемые к двум кольцам" (DAS) подсоединены к обеим кольцевым сетям. SAS подключены к первичному кольцу через "концентратор", который обеспечивает связи для множества SAS. Koнцентратор отвечает за то, чтобы отказ или отключение питания в любой из SAS не прерывали кольцо. Это особенно необходимо, когда к кольцу подключен РС или аналогичные устройства, у которых питание часто включается и выключается.

На Рис. 2.7 "Узлы FDDI: DAS, SAS и концентратор" представлена типичная конфигурация FDDI, включающая как DAS, так и SAS.


Рис. 2.7.  FDDI Nodes: DAS, RAS and Concentrator

Каждая DAS FDDI имеет два порта, обозначенных А и В. Эти порты подключают станцию к двойному кольцу FDDI. Следовательно, как это показано на Рис. 2.8 "Порты DAS FDDI", каждый порт обеспечивает соединение как с первичным, так и со вторичным кольцом.


Рис. 2.8.  FDDI DAS Ports



Физические соединения


Станции сети IBM Token Ring напрямую подключаются к MSAU, которые могут быть объединены с помощью кабелей, образуя одну большую кольцевую сеть (смотри Рис. 2.4). Кабели-перемычки соединяют MSAU со смежными MSAU. Кабели-лепестки подключают MSAU к станциям. В составе МSAU имеются шунтирующие реле для исключения станций из кольца.


Рис. 2.4.  IBM Token Ring Network Physical Connections



Физические соединения


FDDI устанавливает применение двойных кольцевых сетей. Трафик по этим кольцам движется в противоположных направлениях. В физическом выражении кольцо состоит из двух или более двухточечных соединений между смежными станциями. Одно из двух колец FDDI называется первичным кольцом, другое-вторичным кольцом. Первичное кольцо используется для передачи данных, в то время как вторичное кольцо обычно является дублирующим.

"Станции Класса В" или "станции, подключаемые к одному кольцу" (SAS) подсоединены к одной кольцевой сети; "станции класса А" или "станции, подключаемые к двум кольцам" (DAS) подсоединены к обеим кольцевым сетям. SAS подключены к первичному кольцу через "концентратор", который обеспечивает связи для множества SAS. Koнцентратор отвечает за то, чтобы отказ или отключение питания в любой из SAS не прерывали кольцо. Это особенно необходимо, когда к кольцу подключен РС или аналогичные устройства, у которых питание часто включается и выключается.

На Рис. 2.7 "Узлы FDDI: DAS, SAS и концентратор" представлена типичная конфигурация FDDI, включающая как DAS, так и SAS.


Рис. 2.7.  FDDI Nodes: DAS, RAS and Concentrator

Каждая DAS FDDI имеет два порта, обозначенных А и В. Эти порты подключают станцию к двойному кольцу FDDI. Следовательно, как это показано на Рис. 2.8 "Порты DAS FDDI", каждый порт обеспечивает соединение как с первичным, так и со вторичным кольцом.


Рис. 2.8.  FDDI DAS Ports



Физическое подключение


IEEE 802.3 определяет несколько различных стандартов физического уровня, в то время Ethernet определяет только один. Каждый из стандартов протокола физического уровня IEEE 802.3 имеет наименование, в котором отражены его важнейшие характеристики. Пример такого наименования приведен на Рисунке 2.1.


Рис. 2.1.  Компоненты наименования стандартов физического уровня согласно IEEE 802.3

Краткая справка по физическим характеристикам стандартов Ethernet Версии 2 и IEEE 802.3 представлена в Таблице 2.1.

Таблица 2.1. Физические характеристики стандартов Ethernet Версии 2 и IEEE 802.3

ХарактеристикиEthernetIEEE 802.310Base510Base21Base510BaseT10Broad36
Скорость, Mbps10101011010
Метод передачиBasebandBasebandBasebandBasebandBasebandBroadband
Макс. длина сегмента, м5005001852501001800
Среда передачи50-Ом коаксиал (толстый)50-Ом коаксиал (толстый)50-Ом коаксиал (тонкий)неэкр. витая паранеэкр. витая пара75-ohm coax
ТопологияШинаШинаШинаЗвездаЗвездаШина

Ethernet соответствует стандарту 10Base5 IEEE 802.3. Оба этих протокола определяют шинную топологию сети с соединительным кабелем между конечной станцией и действующей сетевой средой. В случае Ethernet, этот кабель называется трансиверный кабель. Трансиверный кабель соединяется с приемопередающим устройством, подключенным к физической сетевой среде. Конфигурация IEEE 802.3 почти такая же, за исключением того, что соединительный кабель известен как attachment unit interface (AUI) - интерфейс подключения устройства, и приемопередатчик называется medium attachment unit (MAU) - блок подключения к среде. В обоих случаях соединительный кабель подключается к интерфейсной плате (или схеме) на конечном сетевом устройстве.



Историческая справка


Ethernet был разработан Исследовательским центром в Пало Альто (PARC) корпорации Xerox в 1970-м году. Ethernet стал основой для спецификации IEEE 802.3, которая появилась 1980-м году. После недолгих споров компании Digital Equipment Corporation, Intel Corporation и Xerox Corporation совместно разработали и приняли спецификацию (Version 2.0), которая была частично совместима с 802.3. На сегодняшний день Ethernet и IEEE 802.3 являются наиболее распространенными протоколами локальных вычислительных сетей (ЛВС). Сегодня термин Ethernet чаще всего используется для описания всех ЛВС работающих по принципу множественный доступ с обнаружением несущей (carrier sense multiple access/collision detection (CSMA/CD)), которые соотвествуют Ethernet, включая IEEE 802.3.

Когда Ethernet был разработан, он должен был заполнить нишу между глобальными сетями, низкоскоростными сетями и специализированными сетями компьтерных центров, которые работали на высокой скорости, но очень ограниченном расстоянии. Ethernet хорошо подходит для приложений где локальные коммуникации должны выдерживать высокие нагрузки при высоких скоростях в пиках.



Канальный уровень PPP


РРР использует принципы, терминологию и структуру блока данных процедур HDLC (ISO 3309-1979) Международной Организации по Стандартизации (ISO), модифицированных стандартом ISO 3309-1984/PDAD1 "Addendum 1:Start/stop Trasmission" (Приложение 1: Стартстопная передача"). ISO 3309-1979 определяет структуру блока данных HLDC для применения в синхронных окружениях. ISO 3309-1984/PDAD1 определяет предложенные для стандарта ISO 3309-1979 модификации, которые позволяют его использование в асинхронных окружениях. Процедуры управления РРР используют дефиниции и кодирование управляющих полей, стандартизированных ISO 4335-1979 и ISO 4335-1979/Addendum 1-1979.

Нa Рис. 2.15 приведен формат блока данных РРР.


Рис. 2.15.  PPP Frame Format

flag

Длина последовательности "флаг" равна одному байту; она указывает на начало или конец блока данных. Эта последовательность состоит из бинарной последовательности 01111110.

address

Длина поля "адрес" равна 1 байту; оно содержит бинарную последовательность 11111111, представляющую собой стандартный широковещательный адрес. РРР не присваивает индивидуальных адресов станциям.

control

Поле "управление" составляет 1 байт и содержит бинарную последовательность 00000011, которая требует от пользователя передачи информации непоследовательным кадром. Предусмотрены услуги без установления соединения канала связи, аналогичные услугам LLC Type 1. Подробную информацию о типах LLC и блоков данных смотри в Главе 3.

protocol

Длина поля "протокол" равна 2 байтам; его значение идентифицирует протокол, заключенный в информационном поле блока данных. Большинство современных значений поля протокола определены в последнем выпуске Assigned Numbers Request for Comments (RFC).

data

Длина поля "данные" - от нуля и больше; оно содержит дейтаграмму для протокола, заданного в поле протокола. Конец информационного поля определяется локализацией замыкающей последовательности "флаг" и предоставлением двух байтов полю FCS. Максимальная длина умолчания информационного поля равна 1500 байтам. В соответствии с априорным соглашением, разрешающие реализации РРР могут использовать другие значения максимальной длины информационного поля.

frame check sequence

Поле проверочной последовательности блока данных (FCS) обычно составляет 16 бит (два байта). В соответствии с априорным соглашением, разрешающие реализации РРР могут использовать 32-х битовое (четырехбайтовое) поле FCS, чтобы улучшить процесс выявления ошибок.

Link Control Protocol (LCP) может согласовывать модификации стандартной структуры блока данных РРР. Однако модифицированные блоки данных всегда будут четко различимы от стандартных блоков данных.



Компоненты PPP


РРР обеспечивает метод передачи дейтаграмм через последовательные каналы связи с непосредственным соединением. Он содержит три основных компонента:

Метод формирования дейтаграмм для передачи по последовательным каналам. РРР использует протокол High-level Data Link Control (HDLC)

(Протокол управления каналом передачи данных высокого уровня) в качестве базиса для формирования дейтаграмм при прохождении через каналы с непосредственным соединением. Дополнительная информация по HDLC дается в Главе 3.Расширяемый протокол LCP для организации, выбора конфигурации и проверки соединения канала передачи данных.Семейство протоколов NCP для организации и выбора конфигурации различных протоколов сетевого уровня. РРР предназначена для обеспечения одновременного пользования множеством протоколов сетевого уровня.



Компоненты UltraNet


Сеть UltraNet состоит из различных компонентов, в том числе концентраторов, программного обеспечения для главных вычислительных машин, управляющих сети, сетеых процессоров и канальных адаптеров. Описание этих системных элементов дается в следующих разделах.



Концентратор (hub) UltraNet


Концентратор в UltraNet является центральной точкой связи для главных вычислительных машин сети UltraNet. Он содержит высоко- скоростную внутреннюю параллельную шину (UltraBus), объединяющую все процессоры в пределах этого концентратора. UltraBus отвечает за коммутируемую информацию в сети UltraNet. Концентраторы UltraNet обеспечивают быстрое согласование, управление перегрузкой каналов связи и прямое подключение каналов.



Механизмы управления неисправностями


Сети Token Ring используют несколько механизмов обнаружения и компенсации неисправностей в сети. Например, одна станция в сети Token Ring выбирается "активным монитором" (active monitor). Эта станция, которой в принципе может быть любая станция сети, действует как централизованный источник синхронизирующей информации для других станций кольца и выполняет разнообразные функции для поддержания кольца. Одной из таких функций является удаление из кольца постоянно циркулирующих блоков данных. Если устройство, отправившее блок данных, отказало, то этот блок может постоянно циркулировать по кольцу. Это может помешать другим станциям передавать собственные блоки данных и фактически блокирует сеть. Активный монитор может выявлять и удалять такие блоки и генерировать новый маркер.

Звездообразная топология сети IBM Token Ring также способствует повышению общей надежности сети. Т.к. вся информация сети Token Ring просматривается активными MSAU, эти устройства можно запрограммировать так, чтобы они проверяли наличие проблем и при необходимости выборочно удаляли станции из кольца.

Алгоритм Token Ring, называемый "сигнализирующим" (beaconing), выявляет и пытается устранить некоторые неисправности сети. Если какая-нибудь станция обнаружит серьезную проблему в сети (например такую, как обрыв кабеля), она высылает сигнальный блок данных. Сигнальный блок данных указывает домен неисправности, в который входят станция, сообщающая о неисправности, ее ближайший активный сосед, находящийся выше по течению потока информации (NAUN), и все, что находится между ними. Сигнализация инициализирует процесс, называемый "автореконфигурацией" (autoreconfiguration), в ходе которого узлы, расположенные в пределах отказавшего домена, автоматически выполняют диагностику, пытаясь реконфигурировать сеть вокруг отказавшей зоны. В физическом плане MSAU может выполнить это с помощью электрической реконфигурации.



Основные принципы работы


Для того, чтобы организовать связь через канал связи с непосредственным соединением, инициирующий РРР сначала отправляет пакеты LCР для выбора конфигурации и (факультативно) проверки канала передачи данных. После того, как канал установлен и пакетом LCР проведенo необходимое согласование факультативных средств, инициирующий РРР отправляет пакеты NCP, чтобы выбрать и определить конфигурацию одного или более протоколов сетевого уровня. Как только конфигурация каждого выбранного протокола определена, дейтаграммы из каждого протокола сетевого уровня могут быть отправлены через данный канал. Канал сохраняет свою конфигурацию для связи до тех пор, пока явно выраженные пакеты LCP или NCP не закроют этот канал, или пока не произойдет какое-нибудь внешнее событие (например, истечет срок бездействия таймера или вмешается какой-нибудь пользователь).



Основы технологии


Стандарт FDDI определяет 100 Mb/сек. LAN с двойным кольцом и передачей маркера, которая использует в качестве среды передачи волоконно-оптический кабель. Он определяет физический уровень и часть канального уровня, которая отвечает за доступ к носителю; поэтому его взаимоотношения с эталонной моделью OSI примерно аналогичны тем, которые характеризуют IEEE 802.3 и IЕЕЕ 802.5.

Хотя она работает на более высоких скоростях, FDDI во многом похожа на Token Ring. Oбe сети имеют одинаковые характеристики, включая топологию (кольцевая сеть), технику доступа к носителю (передача маркера), характеристики надежности (например, сигнализация-beaconing), и др. За дополнительной информацией по Token Ring и связанными с ней технологиями обращайтесь к разделам, расположенным ниже.

Одной из наиболее важных характеристик FDDI является то, что она использует световод в качестве передающей среды. Световод обеспечивает ряд преимуществ по сравнению с традиционной медной проводкой, включая защиту данных (оптоволокно не излучает электрические сигналы, которые можно перехватывать), надежность (оптоволокно устойчиво к электрическим помехам) и скорость (потенциальная пропускная способность световода намного выше, чем у медного кабеля).

FDDI устанавливает два типа используемoгo оптического волокна: одномодовое (иногда называемое мономодовым) и многомодовое. Моды можно представить в виде пучков лучей света, входящего в оптическое волокно под определенным углом. Одномодовое волокно позволяет распространяться через оптическое волокно только одному моду света, в то время как многомодовое волокно позволяет распространяться по оптическому волокну множеству мод света. Т.к. множество мод света, распространяющихся по оптическому кабелю, могут проходить различные расстояния (в зависимости от угла входа), и, следовательно, достигать пункт назначения в разное время (явление, называемое модальной дисперсией), одномодовый световод способен обеспечивать большую полосу пропускания и прогoн кабеля на большие расстояния, чем многомодовые световоды. Благодаря этим характеристикам одномодовые световоды часто используются в качестве основы университетских сетей, в то время как многомодовый световод часто используется для соединения рабочих групп. В многомодовом световоде в качестве генераторов света используются диоды, излучающие свет (LED), в то время как в одномодовом световоде обычно применяются лазеры.



Основы технологии


UltraNet обеспечивает услуги, соответствующие четырем низшим уровням эталонной модели OSI. На Рис. 2.13 показаны взаимоотношения между этими уровнями и реализацией UltraNet. В дополнение к перечисленным протоколам UltraNet также обеспечивает Simple Network Management Protocol (SNMP) (Протокол Управления Простой Сетью) и Routing Information Protocol (RIP) (Протокол маршрутной информации). Дополнительная информация по этим протоколам дается соответственно в Главе 5 и Главе 7.


Рис. 2.13.  UltraNet and the OSI Reference Model

UltraNet использует топологию звездообразной сети с концентратором сети (Hub) в центральной точке звезды. Другими компонентами системы UltraNet являются программное обеспечение для главной вычислительной машины, сетевые процессоры, канальные адаптеры, инструментальные средства управления сети и изделия для объединения сетей, такие как роутеры и мосты. Сетевые процессоры соединяют главные вычислительные машины с системой UltraNet и обеспечивают виртуальную цепь и услуги дейтаграмм. Главные вычислительные машины, непосредственно подключенные к системе UltraNet, могут быть удалены друг от друга на расстояние до 30 км. Этот предел может быть расширен подключением к глобальной сети (WAN), например, путем использования каналов связи Т3.



Основы технологии


HSSI определяет как электрический, так и и физический интерфейсы DTE/DCE. Следовательно, он соответствует физическому уровню эталонной модели OSI. Технические характеристики HSSI обобщены в Табл. 2.2.

Таблица 2.2. HSSI Technical Characteristics

Max. signal rate52 Mbps
Max. cable length50 feet
Connector pins50
InterfaceDTE-DCE
Electrical technologyDifferential ECL
Typical power consumption610 mW
TopologyPoint-to-point
Cable typeShielded twisted pair

Максимальная скорость передачи сигнала HSSI равна 52 Mb/сек. На этой скорости HSSI может оперировать скоростями Т3 (45 Mb/сек) большинства современных быстродействующих технологий WAN, скоростями Office Channel

(OC)-1 (52 Mb/сек) иерархии синхронной цифровой сети (SDN), а также может легко обеспечить высокоскоростное соединение между локальными сетями, такими, как Token Ring и Ethernet.

Применение дифференциальных логических схем с эмиттерным повторителем (ЕCL) позволяет HSSI добиться высоких скоростей передачи информации и низких уровней помех. ECL использовалась в интерфейсах Cray в течение нескольких лет; эта схема определена стандартом сообщений High-Perfomance Parallel Interface (HIPPI), разработанным ANSI, для связей LAN с суперкомпьютерами. ECL-это имеющаяся в готовом виде технология, которая позволяет превосходно восстанавливать синхронизацию приемника, результатом чего является достаточный запас надежности по синхронизации.

Гибкость синхронизации и протокола обмена информацией HSSI делает возможным выделение полосы пропускания пользователю (или поставщику). DCE управляет синхронизацией путем изменения ее скорости или путем стирания импульсов синхронизации. Таким образом DCE может распределять полосу пропускания между прикладными задачами. Например, PВX может потребовать одну величину полосы пропускания, роутер другую величину, а расширитель канала-третью. Распределение полосы пропускания является ключом для того, чтобы сделать Т3 и другие услуги широкой полосы (broadband) доступными и популярными.

HSSI использует субминиатюрный, одобренный FCC 50-контактный соединитель, размеры которого меньше, чем у его аналога V.35. Чтобы уменьшить потребность в адаптерах для соединения двух вилок или двух розеток, соединители кабеля HSSI определены как вилки. Кабель HSSI использует такое же число контактов и проводов, как кабель интерфейса Small Computer Systems Interface 2 (SCSI-2), однако технические требования HSSI на электрические сигналы более жесткие.

Для любого из высших уровней диагностического ввода, HSSI обеспечивает четыре проверки петлевого контроля. Эти тесты показаны на Рис. 2.14



Особенности отказоустойчивости


FDDI характеризуется рядом особенностей отказоустойчивости. Основной особенностью отказоустойчивости является наличие двойной кольцевой сети. Если какая-нибудь станция, подключенная к двойной кольцевой сети, отказывает, или у нее отключается питание, или если поврежден кабель, то двойная кольцевая сеть автоматически "свертывается" ("подгибается" внутрь) в одно кольцо, как показано на Рис.2.9

"Конфигурация восстановления кольца при отказе станции". При отказе Станции 3, изображенной на рисунке, двойное кольцо автоматически свертывается в Станциях 2 и 4, образуя одинарное кольцо. Хотя Станция 3 больше не подключена к кольцу, сеть продолжает работать для оставшихся станций.


Рис. 2.9.  Station Failure, Ring Recovery Configuration

На Рис. 2.10 "Конфигурация восстановления сети при отказе кабеля" показано, как FDDI компенсирует отказ в проводке. Станции 3 и 4 свертывают кольцо внутрь себя при отказе проводки между этими станциями.


Рис. 2.10.  Failed Wiring, Ring Recovery Configuration

По мере увеличения размеров сетей FDDI растет вероятность увеличения числа отказов кольцевой сети. Если имеют место два отказа кольцевой сети, то кольцо будет свернуто в обоих случаях, что приводит к фактическому сегментированию кольца на два отдельных кольца, которые не могут сообщаться друг с другом. Последующие отказы вызовут дополнительную сегментацию кольца.

Для предотвращения сегментации кольца могут быть использованы оптические шунтирующие переключатели, которые исключают отказавшие станции из кольца. На Рис. 2.11 показано "Использование оптического шунтирующего переключателя".


Рис. 2.11.  Use of Optical Bypass Switch

Устройства, критичные к отказам, такие как роутеры или главные универсальные вычислительные машины, могут использовать другую технику повышения отказоустойчивости, называемую "двойным подключением" (dual homing), для того, чтобы обеспечить дополнительную избыточность и повысить гарантию работоспособности. При двойном подключении критичное к отказам устройство подсоединяется к двум концентраторам. Одна пара каналов концентраторов считается активным каналом; другую пару называют пассивным каналом. Пассивный канал находится в режиме поддержки до тех пор, пока не будет установлено, что основной канал (или концентратор, к которому он подключен) отказал. Если это происходит,то пассивный канал автоматически активируется.



Передача маркера


Token Ring и IEEE 802.5 являются главными примерами сетей с передачей маркера. Сети с передачей маркера перемещают вдоль сети небольшой блок данных, называемый маркером. Владение этим маркером гарантирует право передачи. Если узел, принимающий маркер, не имеет информации для отправки, он просто переправляет маркер к следующей конечной станции. Каждая станция может удерживать маркер в течение определенного максимального времени.

Если у станции, владеющей маркером, имеется информация для передачи, она захватывает маркер, изменяет у него один бит (в результате чего маркер превращается в последовательность "начало блока данных"), дополняет информацией, которую он хочет передать и, наконец, отсылает эту информацию к следующей станции кольцевой сети. Когда информационный блок циркулирует по кольцу, маркер в сети отсутствует (если только кольцо не обеспечивает "раннего освобождения маркера" - early token release), поэтому другие станции, желающие передать информацию, вынуждены ожидать. Следовательно, в сетях Token Ring не может быть коллизий. Если обеспечивается раннее высвобождение маркера, то новый маркер может быть выпущен после завершения передачи блока данных.

Информационный блок циркулирует по кольцу, пока не достигнет предполагаемой станции назначения, которая копирует информацию для дальнейшей обработки. Информационный блок продолжает циркулировать по кольцу; он окончательно удаляется после достижения станции, отославшей этот блок. Станция отправки может проверить вернувшийся блок, чтобы убедиться, что он был просмотрен и затем скопирован станцией назначения.

В отличие от сетей CSMA/CD (например, Ethernet) сети с передачей маркера являются детерминистическими сетями. Это означает, что можно вычислить максимальное время, которое пройдет,прежде чем любая конечная станция сможет передавать. Эта характеристика, а также некоторые характеристики надежности, которые будут рассмотрены дальше, делают сеть Token Ring идеальной для применений, где задержка должна быть предсказуема и важна устойчивость функционирования сети. Примерами таких применений является среда автоматизированных станций на заводах.



Программное обеспечение главной вычислительной машины UltraNet


Программное обеспечение главной вычислительной машины UltraNet состоит из:

Библиотек программирования, позволяющих пропускать через UltraNet программы клиентов Transmission Control Protocol/Internet Protocol (TCP/IP) (Протокол управления передачей/ Протокол Internet) и графические прикладные программы.Драйверов устройств сетевых процессоров, которые обеспечивают интерфейс между процессами пользователя и сетевым процессором UltraNet через адаптер процессора.Поддержки системы программных гнезд, базирующейся на библиотеках программ, UNIX Berkeley Standard Distribution (BSD). Эта поддержка обеспечивается в форме совокупности библиотечных функций языка С, которая заменяет стандартные обращения к системе программных гнезд, чтобы обеспечить совместимость с существующими прикладными задачами, базирующимися на программных гнездах.Обслуживающие конфигурационные программы, которые дают возможность пользователю определять сетевые процессоры, имеющиеся в системе UltraNet, маршруты между концентраторами UltraNet и сетевыми процессорами, а также адреса UltraNet.Диагностические обслуживающие программы, которые позволяют пользователям проверять систему UltraNet для обнаружения возможных проблем. Эти обслуживающие программы могут запускаться компьютером Ultra Network Manager (Управляющий сети UltraNet), а также главной вычислительной машиной.



Сетевые процессоры


Сетеые процессоры UltraNet обеспечивают связи между концентраторами UltraNet и главными вычислительными машинами. Имеются сетевые процессоры, которые поддерживают каналы High-Perfomance Parallel Interface (HIPPI) (Высокопроизводительный параллельный интерфейс), HSX (обеспечивается Cray), ВМС (обеспечивается IBM) и LSC (обеспечивается Cray), а также шины VMEbus, SBus, HP/EISA bus и IBM Micro Channel bus. Сетевые процессоры могут находиться либо в главной вычислительной машине, либо в концентраторе UltraNet.

Сетевой процессор, размещаемый в концентраторе, состоит из платы процессора обработки протоколов, платы персонального модуля и платы пульта ручного управления. Плата процессора обработки протоколов выполняет команды сетевых протоколов; на ней имеются буферы FIFO для выполнения буферизации пакетов и согласования скоростей. Плата персонального модуля управляет обменом информации между процессором обработки протоколов и различными средами сети, каналами главной управляющей машины или специализированной аппаратурой. Плата пульта ручного управления управляет устройством ввода/вывода (I/O) информации между сетевым процессором и главной вычислительной машиной, монитором графического дисплея или другим концентратором.

UltraNet также обеспечивает систему графического изображения с высокой разрешающей способностью, которая принимает информацию в пикселях из главной вычислительной машины UltraNet и отображает ее на мониторе, подключенном к адаптеру. Это устройство называется сетевым процессором кадрового буфера.

Большинство задач обработки сетевых протоколов выполняются сетевыми процессорами UltraNet. Сетевые процессоры могут принимать реализации TCP/IP и связанных с ним протоколов, а также модифицированные пакеты протоколов OSI, чтобы осуществлять связь между главными вычислительными машинами.



Система приоритетов


Сети Тоkеn Ring используют сложную систему приоритетов, которая позволяет некоторым станциям с высоким приоритетом, назначенным пользователем, более часто пользоваться сетью. Блоки данных Token Ring содержат два поля, которые управляют приоритетом: поле приоритетов и поле резервирования.

Только станции с приоритетом, который равен или выше величины приоритета, содержащейся в маркере, могут завладеть им. После того, как маркер захвачен и изменен( в результате чего он превратился в информационный блок), только станции, приоритет которых выше приоритета передающей станции, могут зарезервировать маркер для следующего прохода по сети. При генерации следующего маркера в него включается более высокий приоритет данной резервирующей станции. Станции, которые повышают уровень приоритета маркера, должны восстановить предыдущий уровень приоритета после завершения передачи.



определены как сходные технологии.


Ethernet и IEEE 802. 3 определены как сходные технологии. Оба стандарта используют метод доступа в сети CSMA/CD (carrier-sense multiple access/collision detection) - множественный доступ с обнаружением несущей. Станции, использующие этот метод могут получить доступ к несущей в любое время. Перед тем как послать данные, такая станция "прослушивает" сеть, чтобы удостовериться, что никто больше не использует её. Если среда передачи в данный момент кем-то используется, станция задерживает передачу. Если же -нет, то станция начинает передавать. Коллизия происходит когда две станции, прослушав сетевой трафик и обнаружив "тишину", начинают передачу одновременно. В этом случае обе передачи прерываются, и станции должны повторить передачу спустя некоторое время. Специальный алгоритм "задержки" определяет, когда конфликтующие станции повторят передачу. Станции, использующие метод CSMA/CD могут обнаружить коллизии в сети и, следовательно, они знают, когда надо повторять передачу.

Оба стандарта определяют сети, как сети с широковещательными сообщениями. Другими словами, все станции видят все кадры, не обращая внимания на назначение пакета. Каждая станция должна проверить принятый пакет, чтобы определить является ли она станцией назначения. Если это так, пакет пропускается к протоколу верхнего уровня для соответствующей обработки.

Различия между Ethernet и IEEE 802.3 стандартами очень незначительны. Ethernet обеспечивает сервисы соответствующие 1-му и 2-му уровням рекомендованной модели OSI, в то время как IEEE 802.3 определяет физический уровень (Уровень 1 OSI) и часть канального уровня (Уровень 2 OSI) - протокол доступа к среде, но не определяет протокол управления логической связью. Как Ethernet так и IEEE 802.3 реализованы в аппаратной части оборудования. Обычно физически эти протоколы реализуются, или на интерфейсной плате сетевого устройства, или в схеме главной платы сетевого устройства.


в основном почти совместимы, хотя


Сети Token Ring и IEEE 802.5 в основном почти совместимы, хотя их спецификации имеют относительно небольшие различия. Сеть Token Ring IBM оговаривает звездообразное соединение, причем все конечные устройства подключаются к устройству, называемому "устройством доступа к многостанционной сети" (MSAU), в то время как IEEE 802.5 не оговаривает топологию сети (хотя виртуально все реализации IEEE 802.5 также базируются на звездообразной сети). Имеются и другие отличия, в том числе тип носителя (IEEE 802.5 не оговаривает тип носителя, в то время как сети Toke Ring IBM используют витую пару) и размер поля маршрутной информации (смотри далее в этой главе обсуждение характеристик полей маршрутной информации). На Рис. 2.3 представлены обобщенные характеристики сетей Token Ring и IЕЕЕ 802.5.


Рис. 2.3.  IBM Token Ring Network/IEEE 802.5 Comparison


Технические условия FDDI


FDDI определяется 4-мя независимыми техническими условиями (смотри Рис. 2.6 "Стандарты FDDI"):

Media Access Control (MAC) (Управление доступом к носителю)

определяет способ доступа к носителю, включая формат пакета, обработку маркера, адресацию, алгоритм CRC (проверка избыточности цикла) и механизмы устранения ошибок.

Physical Layer Protocol (PHY) (Протокол физического уровня)

определяет процедуры кодирования/декодирования информации, требования к синхронизации, формированию кадров и другие функции.

Station Management (SMT) (Управление станциями)

определяет конфигурацию станций FDDI, конфигурацию кольцевой сети и особенности управления кольцевой сетью, включая вставку и исключение станций, инициализацию, изоляцию и устранение неисправностей, составление графика и набор статистики.


Рис. 2.6.  FDDI Standarts



Требования, определяемые физическим уровнем


РРР может работать через любой интерфейс DTE/DCE (например, EIA RS-232-C, EIA RS-422, EIA RS-423 и CCITT V.35). Единственным абсолютным требованием, которое предъявляет РРР, является требование обеспечения дублированных схем (либо специально назначенных, либо переключаемых), которые могут работать как в синхронном, так и в асинхронном последовательном по битам режиме, прозрачном для блоков данных канального уровня РРР. РРР не предъявляет каких-либо ограничений, касающихся скорости передачи информации, кроме тех, которые определяются конкретным примененным интерфейсом DTE/DCE.



Управляющий сети UltraNet


Управляющий сети UltraNet обеспечивает инструментальные средства, которые помогают инициализировать и управлять UltraNet. Физическим выражением управляющего является базирующийся на Intel 80386 РС, работающий в операционных системах DOS и Windows, который подключает к концентратору UltraNet через шину управления сети (NMB). NMB представляет собой независимую 1 Mg/сек LAN, базирующуюся на спецификации StarLAN (1Base5). Управляющий UltraNet заменяет информацию управления, пользуясь протоколом SNMP.



Форматы блока данных физическoго уровня


Форматы блока данных физическoго уровня (Уровень 1) ISDN различаются в зависимости от того, является блок данных отправляемым за пределы терминала (из терминала в сеть) или входящим в пределы терминала (из сети в терминал). Оба вида блока данных физического уровня показаны на Рис. 2.17 "Форматы блоков данных физического уровня ISDN". Длина блоков данных равна 48 битам, из которых 36 бит представляют информацию. Биты F обеспечивают синхронизацию. Биты L регулируют среднее значение бита. Биты Е используются для решения конфликтной ситуации, когда несколько терминалов на какой-нибудь пассивной шине претендуют на один канал. Бит А активирует усройства. Биты S ещe не получили назначения. Биты В1, В2 и D предназначены для данных пользователя.


Рис. 2.17.  ISDN Physical-Layer Frame Formats

Физически к одной цепи может быть подключено множество устройств пользователей ISDN. Для такой конфигурации столкновения могут быть результатом одновременной передачи двух терминалов. Поэтому ISDN предусматривает средства для определения конфликтов в канале связи. При получении устройством NT бита D из ТЕ оно отражает этот бит эхо-сигналом обратно в соседнюю позицию Е-бита. ТЕ ожидает, что соседний Е бит должен быть тем же самым, что и бит D, который он передал в последней передаче.

Терминалы не могут передавать в D-канал до тех пор, пока они не распознают специфичное число единиц (указывающих на "отсутствие сигнала"), соответствующее заранее установленному приоритету. Если устройство ТЕ обнаруживает какой-либо бит в канале с эхо-сигналом (Е), отличающимся от его битов D, oнo должно немедленно прекратить передачу. Этот простой прием является гарантией того, что одновременно только один терминал может передавать свои D-сообщения. После успешной передачи D-сообщения приоритет этого терминала становится более низким, что обеспечивается путем предъявления ему требования до передачи детектировать большее число последовательных единиц. Приоретет у терминалов может не повыситься до тех пор, пока все другие устройства на этой линии не получат возможность отправить D-сообщение. Телефонные связи имеют более высокий приоритет, чем все другие службы, а информация обмена сигналами имеет более высокий приоритет, чем несигнализирующая информация.


2 протокола обмена сигналами ISDN


Уровнем 2 протокола обмена сигналами ISDN является Link Access Procedure, D channel (Процедура доступа к каналу связи, D-канал), известная также как LAРD. LAPD аналогична "Управлению каналом передачи данных высокого уровня" (HDLC) и "Процедуре доступа к каналу связи, сбалансированной" (LAPB) (смотри Главу 3, где дается более подробная информация об этих протоколах). Как видно из раскрытия его акронима, LAPD используется в D-канале для того, чтобы обеспечить поток и соответствующий прием управляющей и сигнализирующей информации. Формат блока данных LAPD (смотри Рис. 2.18) очень похож на формат HDLC; также, как НDLC, LAPD использует блок данных супервизора, информационный и непронумерованный блоки данных. Протокол LAPD формально определен в CCITT Q.920 и SSITT Q.921.


Рис. 2.18.  LAPD Frame Format

Поля "флаг" (flag) и "управление" (control) LAPD идентичны этим полям у HDLC. Длина поля "адрес" LAPD может составлять один или два байта. Если в первом байте задан бит расширенного адреса (ЕА), то адрес состоит из одного байта; если он не задан, то адрес состоит из двух байтов. Первый байт адресного поля содержит service access point identifier (SAPI) (идентификатор точки доступа к услугам), который идентифицирует главный вход, в котором услуги LAPD обеспечиваются Уровню 3. Бит C/R указывает, содержит ли блок данных команду или ответный сигнал. Поле "идентификатора конечной точки терминала" (terminal end-point identifier) (TEI) указывает, является ли терминал единственным или их много. Этот идентификатор является единственным из перечисленных выше, который указывает на широковещание.


Для передачи сигналов ISDN используются


Для передачи сигналов ISDN используются две спецификации Уровня 3: CCITT 1.450 (известная также как CCITT Q.930) и CCITT 1.451 (известная также как SSITT Q.931). Вместе оба этих протокола обеспечивают соединения пользователь-пользователь, соединения с коммутацией каналов и с коммутацией пакетов. В них определены разнообразные сообщения по организации и завершению обращения, информационные и смешанные сообщения, в том числе SETUP (УСТАНОВКА), CONNECT (ПОДКЛЮЧАТЬ), RELEASE (ОТКЛЮЧЕНИЕ), USER INFORMATION (ИНФОРМАЦИЯ ПОЛЬЗОВАТЕЛЯ), CANCEL (ОТМЕНА), STATUS (СОСТОЯНИЕ) и DISCONNECT (РАЗЪЕДИНЯТЬ). Эти сообщения функционально схожи с сообщениями, которые обеспечивает протокол Х.25 (более подробно смотри в Главе 3). На рис.2.19, взятом из спецификации CCITT 1.451, показаны типичные стадии обращения с коммутацией каналов ISDN.


Рис. 2.19.  ISDN Circuit-Switched Call Stages

Услуги ISDN


Услуги "Интерфейса базовой скорости" (Basic Rate Interface) (BRI), обеспечиваемые ISDN, предлагают два В-канала и один D-канал (2B+D). Обслуживание В-каналом BRI осуществляется со скоростью 64 Kb/сек; оно предназначено для переноса управляющей информации и информации сигнализации, хотя при определенных обстоятельствах может поддерживать передачу информации пользователя. Протокол обмена сигналами D-канала включает Уровни 1-3 эталонной модели OSI. BRI обеспечивает также управление разметкой и другие непроизводительные операции, при этом общая скорость передачи битов доходит до 192 Kb/сек. Спецификацией физического уровня BRI является ССIТТ 1.430.

Услуги "Интерфейса первичной скорости" ISDN (Primary Rate Interface) (PRI) предлагают 23 В-канала и один D-канал в Северной Америке и Японии, обеспечивающие общую скорость передачи битов 1.544 Mb/сек (канал-D PRI работает на скорости 64 Kb/сек). PRI ISDN в Европе, Австралии и других частях света обеспечивает 30 В-каналов и один 64 Kb/сек D-канал и общую скорость интерфейса 2.048 Mb/сек. Спецификацией физического уровня PRI является CCITT 1.431.